Resumen
El mildiu (Plasmopara viticola) y el oídio (Erysiphe necator) son enfermedades fúngicas problemáticas en viticultura. Este trabajo analiza la dinámica y el comportamiento de los niveles de esporas aerovagantes de estos hongos en el centro de la península ibérica (Castilla-La Mancha) y su relación con las condiciones meteorológicas y las fenofases de la vid.
El estudio se realizó en viñedos del oeste de la provincia de Cuenca (Castilla-La Mancha). Se efectuó la monitorización aerobiológica de las esporas y el seguimiento fenológico del cultivo. Se realizó un análisis intradiario de los niveles de esporas y un análisis de la relación entre las concentraciones diarias de esporas y las variables meteorológicas.
Las esporas de E. necator aparecieron constantemente durante el periodo de muestreo, alcanzando concentraciones máximas durante el desarrollo de las inflorescencias (mayo). Las esporas de P. viticola predominaron durante la brotación (marzo-abril). Las concentraciones de esporas de E. necator estuvieron influenciadas positivamente por las temperaturas y negativamente por la humedad relativa y la precipitación. Las de P. viticola estuvieron influenciadas negativamente por las temperaturas y la velocidad del viento y positivamente por la humedad relativa. El análisis intradiario mostró que los niveles más altos de esporas de E. necator se alcanzan entre las 16-18 horas, mientras que los de P. viticola entre las 11-12 horas.
El riesgo de infección por mildiu y oídio es alto en primavera, entre la brotación y la floración. Sin embargo, las condiciones meteorológicas del periodo estival dificultan el desarrollo del ciclo de vida de estos hongos.
Citas
Organisation Internationale de la Vigne et du Vin (OIV). Annual Assessment of the World Vine and Wine Sector in 2023. Paris: OIV Statistics Publications. [actualizado en 2024; citado 19 de julio de 2025] Disponible en: https://www.oiv.int/sites/default/files/documents/Annual_Assessment_2023.pdf.
Gessler C, Pertot I, Perazzolli M. Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol Mediterr. 2011;50:3–44.
Bois B, Zito S, Calonnec A, Ollat N. Climate vs grapevine pests and diseases worldwide: The first results of a global survey. OENO One. 2017;51(2):133–9.
Calonnec A, Cartolaro P, Poupot C, Dubourdieu D, Darriet P. Effects of Uncinula necator on the yield and quality of grapes (Vitis vinifera) and wine. Plant Pathol. 2004;53(4):434–45.
Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol. 2012;13:1–16.
Koledenkova K, Esmaeel Q, Jacquard C, Nowak J, Clément C, Ait Barka E. Plasmopara viticola the causal agent of downy mildew of grapevine: From its taxonomy to disease management. Front Microbiol. 2022;13:889472.
Stevens RB. Cultural practices in disease control. En: Horsfall JG, director. Plant Pathology: An Advanced Treatise. Volume III: The Diseases, Population, Epidemics and Control. London: Academic Press Inc.; 1960. pp. 357–429.
Holb IJ, Füzi I. Monitoring of ascospore density of Erysiphe necator in the air in relation to weather factors and powdery mildew development. Eur J Plant Pathol. 2016;144:751–62.
Hoffmann P, Virányi F. The occurrence of cleistothecia of Erysiphe necator (Grapevine powdery mildew) and their epidemiological significance in some vine-growing regions of Hungary. Acta Phytopathol Entomol Hung. 2007;42(1):9–16.
Karbalaei-Khiavi H, Shikhlinskiy H, BabaeiAhari A, Heydari A, Akrami M. Study on the biology and epidemiology of Uncinula necator – the causal agent of grape powdery mildew disease. J Environ Sci Eng A. 2012;1:574–9.
González-Fernández E, Piña-Rey A, Fernández-González M, Rodríguez-Rajo FJ. Effect of environmental conditions and phenology in the dispersal of secondary Erysiphe necator conidia in a vineyard. Vitis. 2019;58:49–58.
Jailloux F, Willocquet L, Chapuis L, Froidefond G. Effect of weather factors on the release of ascospores of Uncinula necator, the cause of grape powdery mildew, in the Bordeaux region. Can J Bot. 1999;77:1044–51.
Martínez-Bracero M, González-Fernández E, Wójcik M, Alcázar P, Fernández-González M, Kasprzyk I, Rodríguez-Rajo FJ, Galán C. Airborne fungal phytopathological spore assessment in three European vineyards from different bioclimatic areas. Aerobiologia. 2020;36:715–29.
Willocquet L, Colombet D, Rougier M, Fargues J, Clerjeau M. Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. Eur J Plant Pathol. 1996;102:441–9.
Peduto F, Backup P, Hand EK, Janousek CN, Gubler WD. Effect of high temperature and exposure time on Erysiphe necator growth and reproduction: revisions to the UC Davis powdery mildew risk index. Plant Dis. 2013;97:1438–47.
Willocquet L, Berud F, Raoux L, Clerjeau M. Effects of wind, relative humidity, leaf movement and colony age on dispersal of conidia of Uncinula necator, causal agent of grape powdery mildew. Plant Pathol. 1998;47:234–42.
Willocquet L, Clerjeau M. An analysis of the effects of environmental factors on conidial dispersal of Uncinula necator (Grape powdery mildew) in vineyards. Plant Pathol. 1998;47:227–33.
Pearson RC, Gärtel W. Occurrence of hyphae of Uncinula necator in buds of grapevine. Plant Dis. 1985;69:149–51.
Pearson RC, Gadoury DM. Cleistothecia, the source of primary inoculum for grape powdery mildew in New York. Phytopathology. 1987;77:1509–14.
Rossi V, Caffi T, Bugiani R, Spanna F, Della Valle D. Estimating the germination dynamics of Plasmopara viticola oospores using hydro-thermal time. Plant Pathol. 2008;57:216–26.
Maddalena G, Russo G, Toffolatti SL. The study of the germination dynamics of Plasmopara viticola oospores highlights the presence of phenotypic synchrony with the host. Front Microbiol. 2021;12.
Rossi V, Caffi T. Effect of water on germination of Plasmopara viticola oospores. Plant Pathol. 2007;56:957–66.
Gindro K, Schnee S, Lecoultre N, Michellod E, Zufferey V, Spring JL, Viret O, Dubuis PH. Development of downy mildew in grape bunches of susceptible and resistant cultivars: infection pathways and limited systemic spread. Aust J Grape Wine Res. 2022;28(4):572–80.
Rakhmatov A, Kholliev A, Tashpulatov U, Haydarova S. Damage periods of the main diseases occurring in vineyards during the annual development phases. E3S Web Conf. 2024;563:03002.
Caffi T, Gilardi G, Monchiero M, Rossi V. Production and release of asexual sporangia in Plasmopara viticola. Phytopathology. 2013;103:64–73.
Fernández-González M, Piña-Rey A, González-Fernández E, Aira MJ, Rodríguez-Rajo FJ. First assessment of Goidanich Index and aerobiological data for Plasmopara viticola infection risk management in north-west Spain. J Agric Sci. 2019;1–11.
Caffi T, Legler SE, González-Domínguez E, Rossi V. Effect of temperature and wetness duration on infection by Plasmopara viticola and on post-inoculation efficacy of copper. Eur J Plant Pathol. 2016;144:737–50.
Burruano S. The life-cycle of Plasmopara viticola, cause of downy mildew of vine. Mycologist. 2000;14:179–82.
Díaz MR, Iglesias I, Jato MV. Airborne concentrations of Botrytis, Uncinula and Plasmopara spores in a vineyard in Leiro-Ourense (N.W. Spain). Aerobiologia. 1997;13:31–5.
Fernández-González M, Ramos-Valcárcel D, Aira MJ, Rodríguez- Rajo FJ. Prediction of biological sensors appearance with ARIMA models as a tool for integrated pest management protocols. Ann Agric Environ Med. 2016;23:129–37.
Martínez-Bracero M, Alcázar P, Velasco-Jiménez MJ, Galán C. Fungal spores affecting vineyards in Montilla-Moriles, southern Spain. Eur J Plant Pathol. 2019;153:1–13.
Ministerio de Agricultura, Pesca y Alimentación (MAPA). Tercera parte: Estadísticas Agrarias. Capítulo 7: Superficie y producciones de cultivo. Madrid: MAPA, Anuario de Estadística 2023. [actualizado en 2024; citado 27 de julio de 2025] Disponible en: https://www.mapa.gob.es/estadistica/pags/anuario/2023/FORMATO%20PDF/AE23-C07/CAP%C3%8DTULO%207.pdf.
Rivas-Martínez S, Penas Á, del Río S, Díaz González TE, Rivas-Sáenz S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. En: Loidi J, director. The Vegetation of the Iberian Peninsula. Cham: Springer. 2017. pp. 29–80.
Rivas-Martínez S, Penas Á, Díaz González TE, Cantó P, del Río S, Costa JC, Herrero L, Molero J. Biogeographic units of the Iberian Peninsula and Balearic Islands to district level. A concise synopsis. En: Loidi J, director. The Vegetation of the Iberian Peninsula. Cham: Springer. 2017. pp. 131–88.
Hirst J. An automatic volumetric spore trap. Ann Appl Biol. 1952;39(2):257–65.
Galán C, Cariñanos P, Alcázar P, Domínguez-Vilches E. Spanish aerobiology network (REA): Management and quality manual. Córdoba: Servicio de Publicaciones de la Universidad de Córdoba. 2007.
Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A, et al. Recommended terminology for aerobiological studies. Aerobiologia. 2017;33:293–5.
Galán C, Tormo R, Cuevas J, Infante F, Domínguez E. Theoretical daily variation patterns of airborne pollen in the southwest of Spain. Grana. 1991;30(1):201–9.
Oliveira M, Ribeiro H, Delgado JL, Abreu I. Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia. 2009;25(2):85–98.
Lorenz DH, Eichhorn KW, Bleiholder H, Klose R, Meier U, Weber E. Growth stages of the grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust J Grape Wine Res. 1995;1(2):100–3.
Cornelius C, Petermeier H, Estrella N, Menzel A. A comparison of methods to estimate seasonal phenological development from BBCH scale recording. Int J Biometeorol. 2011;55(6):867–77.
Halleen F, Holz G. An overview of the biology, epidemiology and control of Uncinula necator (Powdery Mildew) on grapevine, with reference to South Africa. S Afr J Enol Vitic. 2001;22:111–21.
Fernández-González M, Rodríguez-Rajo FJ, Jato V, Aira MJ. Incidence of fungals in a vineyard of the denomination of origin Ribeiro (Ourense - North-Western Spain). Ann Agric Environ Med. 2009;16:263–71.
Grove GG. Perennation of Uncinula necator in vineyards of Eastern Washington. Plant Dis. 2004;88(3):242–7.
Kennelly MM, Gadoury DM, Wilcox WF, Magarey PA, Seem RC. Primary infection, lesion productivity, and survival of sporangia in the grapevine downy mildew pathogen Plasmopara viticola. Phytopathology. 2007;97:512–22.
Cortiñas-Rodríguez JA, Fernández-González M, Vázquez-Ruiz RA, Aira MJ, Rodríguez-Rajo FJ. The understanding of phytopathogens as a tool in the conservation of heroic viticulture areas. Aerobiologia. 2022;38:177–93.
Carrera L, Fernández-González M, Aira MJ, Espinosa KCS, Otero RP, Rodríguez-Rajo FJ. Airborne Plasmopara viticola sporangia: a study of vineyards in two bioclimatic regions of northwestern Spain. Horticulturae. 2025;11(3):228.
McCartney HA. Airborne dissemination of plant fungal pathogens. J Appl Bacteriol Symp Suppl. 1991;70:39S–48S.
Rodríguez-Rajo FJ, Seijo MC, Jato V. Estudio de los niveles de los principales fitopatógenos para la optimización de cosechas de Vitis vinifera en Valdeorras, Ourense (1998). Bot Complut. 2002;26:121–35.
Fernández-González M. Estudio fenológico y aerobiológico en un viñedo en la Comarca del Ribeiro. Tesis doctoral. Vigo: Universidade de Vigo, 2011. [citado 23 de julio de 2025]. Disponible en: https://www.investigo.biblioteca.uvigo.es/xmlui/handle/11093/227.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2025 Revista de Salud Ambiental
