A epigenética: uma ferramenta importante na avaliação ambiental em Ecotoxicologia
PDF (Español (España))

Palavras-chave

alterações epigenéticas
Lemna minor
Caenorhabditis elegans
Daphnia magna
herança transgeracional
contaminantes
epigenética

Como Citar

Manrique Julio, E. Y. (2025). A epigenética: uma ferramenta importante na avaliação ambiental em Ecotoxicologia. Revista Espanhola De Saúde Ambiental, 25(2), 139–149. Obtido de https://www.ojs.diffundit.com/index.php/rsa/article/view/1757

Resumo

Introdução: A epigenética investiga as relações causa-efeito entre fatores ambientais específicos e as modificações epigenéticas que desencadeiam respostas adaptativas nas células.

Objetivo: Esta revisão analisou estudos que utilizaram os modelos biológicos Lemna minor, Caenorhabditis elegans e Daphnia magna expostas a contaminantes ambientais. Foram discutidos os possíveis mecanismos de modificações epigenéticas, o seu papel na adaptação dos organismos, bem como a incidência da herança transgeracional. Além disso, procurou identificar áreas onde a investigação é limitada ou contraditória, adotando uma perspetiva crítica sobre o potencial das análises epigenéticas como ferramenta para a biomonitorização da contaminação.

Metodologia: Pesquisa em bases de dados, utilizando termos MeSH e os operadores booleanos AND e OR, incluindo artigos de investigação e de revisão publicados entre 2000 e 2024.

Resultados: As alterações epigenéticas, incluindo a metilação do ADN e as modificações das histonas, são consideradas possíveis biomarcadores de exposição ambiental e podem informar não apenas sobre a exposição química ao longo da vida do organismo, mas também sobre a herança epigenética transgeracional.

Conclusão: É necessária mais investigação para que as marcas epigenéticas possam vir a ser utilizadas como biomarcadores de exposição a substâncias tóxicas e para estudar a adaptação dos organismos às alterações ambientais.

PDF (Español (España))

Referências

Pankaj Chowdhary, Abhay Raj, Digvijay Verma YA. Environmental pollution: causes, effects, and the remedies. In: Elsevier, ed. Microorganisms for Sustainable Environment and Health. 2020.

Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. Chemosphere. 2021; 282(June):1-14. https://doi.org/10.1016/j.chemosphere.2021.131026.

Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Intern Med. 2023; 114(May):15-22.

Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. Environ Sci Pollut Res. 2021; 28(40):55981-6002.

Ramírez-Malule H, Quiñones-Murillo DH, Manotas-Duque D. Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg Contam. 2020; 6:179-93.

Suarez-Ulloa V, Gonzalez-Romero R, Eirin-Lopez JM. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. Mar Pollut Bull. 2015; 98(1-2):5-13.

Mirbahai L, Chipman JK. Epigenetic memory of environmental organisms: A reflection of lifetime stressor exposures. Mutat Res - Genet Toxicol Environ Mutagen. 2014; 764-765:10-7.

Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012; 13(7):484-92.

Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010; 11(3):204-20.

Norouzitallab P, Baruah K, Bossier P, Vanrompay D. Nonmammalian Model Organisms in Epigenetic Research. Elsevier Inc.; 2019.

Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997; 389(6648):251-60.

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011; 21(3):381-95.

Marques S, Outeiro TF. Epigenetics: Development and Disease. Vol 61.; 2013.

Jenuwein,Thomas, and Allis CD. Translating the Histone Code. Sc. 2001; 293(5532):1074-80.

Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996; 84(6):843-51.

Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011; 12(1):7-18.

Miller JL, Grant P. The Role of DNA Methylation and Histone Modifications in Transcriptional Regulation in Humans. Subcell Biochem. 2013; 61:289-317.

Aguilera O, Fernández AF, Muñoz A, Fraga MF. Epigenetics and environment: A complex relationship. J Appl Physiol. 2010; 109(1):243-51.

Athanasio CG, Sommer U, Viant MR, Chipman JK, Mirbahai L. Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. Ecotoxicology. 2018; 27(5):556-68.

Ardura A, Clusa L, Zaiko A, Garcia-Vazquez E, Miralles L. Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels. Sci Rep. 2018; 8(1):1-10.

Akcha F, Barranger A, Bachère E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: in vitro evidence of interaction between DNA damage and DNA methylation. Environ Sci Pollut Res. 2021; 28(7):8266-80.

Weyrich A, Lenz D, Fickel J. Environmental change-dependent inherited epigenetic response. Genes (Basel). 2019; 10(1).

Flores KB, Wolschin F, Amdam G V. The role of methylation of DNA in environmental adaptation. Integr Comp Biol. 2013; 53(2):359-72.

Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev. 2020; 95(3):822-46.

Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002; 196(1):1-7.

Kriukiene E, Liutkeviciute Z, Klimašauskas S. 5-Hydroxymethylcytosine – the elusive epigenetic mark in mammalian DNA. Chem Soc Rev. 2012; 41(21):6916-30.

Xing TY DW. Recent advance in DNA epigenetic modifications- the sixth base in the genome. Sheng li ke xue jin Zhan [Progreso en Fisiol. 2012; 43(3):164-70.

Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biol. 2021; 19(1):1-26.

Assaf Zemach , Ivy E. Mcdaniel PS y DZ. Análisis evolutivo de todo el genoma de la metilación del ADN eucariótico. Science (80- ). 2010; 328(5980):916-19.

Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation during development and regeneration of the annelid Platynereis dumerilii. bioRxiv. Published online 2020: 2020.11.13.381673. https://doi.org/10.1101/2020.11.13.381673.

Suzuki MM, Bird A. DNA methylation landscapes: Provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465-76.

Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol. 2010; 20(17):R780-R785.

Zilberman D. An evolutionary case for functional gene body methylation in plants and animals. Genome Biol. 2017; 18(1):17-9.

Hernando-Herraez I, Heyn H, Fernandez-Callejo M, et al. The interplay between DNA methylation and sequence divergence in recent human evolution. Nucleic Acids Res. 2015; 43(17):8204-14.

Sven Bocklandt, Wen Lin, Mary E. Sehl, Francisco J. Sánchez. Epigenetic Predictor of Age. PlosOne. 2012; 6(6):14821.

de Mendoza A, Lister R, Bogdanovic O. Evolution of DNA Methylome Diversity in Eukaryotes. J Mol Biol. 2020; 432(6):1687-705.

Schübeler D. Function and information content of DNA methylation. Nature. 2015; 517(7534):321-6.

Murillo de Ozores AR, Rodríguez-Aguilera JR. La N6-Metiladenina: Una Potencial Marca De Regulación Epigenética En Eucariontes. Rev Educ Bioquímica. 2016; 35(1):11-17.

Radić S, Stipaničev D, Cvjetko P, et al. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicol Environ Saf. 2011; 74(2):182-7.

Van Antro M, Prelovsek S, Ivanovic S, et al. DNA methylation in clonal duckweed (Lemna minor L.) lineages reflects current and historical environmental exposures. Mol Ecol. 2023; 32(2):428-43.

Wan QL, Meng X, Wang C, et al. Histone H3K4me3 modification is a transgenerational epigenetic signal for lipid metabolism in Caenorhabditis elegans. Nat Commun. 2022; 13(1):1-14.

Skinner MK. Caenorhabditis elegans as an emerging model system in environmental epigenetics. Environ Epigenetics. 2018; 4(1):560-75.

Rudgalvyte M, Peltonen J, Lakso M, Wong G. Chronic MeHg exposure modifies the histone H3K4me3 epigenetic landscape in Caenorhabditis elegans. Comp Biochem Physiol Part - C Toxicol Pharmacol. 2017; 191:109-16.

Eads BD, Andrews J, Colbourne JK. Ecological genomics in Daphnia: Stress responses and environmental sex determination. Heredity (Edinb). 2008; 100(2):184-90.

Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR. Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int. 2009; 35(4):700-6.

Robichaud NF, Sassine J, Beaton MJ, Lloyd VK. The Epigenetic Repertoire of Daphnia magna Includes Modified Histones. Genet Res Int. 2012; 2012:1-7.

Lindeman LC, Thaulow J, Song Y, et al. Epigenetic, transcriptional and phenotypic responses in two generations of Daphnia magna exposed to the DNA methylation inhibitor 5-azacytidine. Environ Epigenetics. 2019; 5(3):1-12.

Yoshida A, Taoka KI, Hosaka A, et al. Characterization of Frond and Flower Development and Identification of FT and FD Genes From Duckweed Lemna aequinoctialis Nd. Front Plant Sci. 2021; 12(October):1-14.

Dar FA, Mushtaq NU, Saleem S, Rehman RU, Dar TUH, Hakeem KR. Role of Epigenetics in Modulating Phenotypic Plasticity against Abiotic Stresses in Plants. Int J Genomics. 2022; 2022.

Tsuji H, Nakamura H, Taoka KI, Shimamoto K. Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol. 2013;54(3):385-97.

Harkess A, Bewick AJ, Lu Z, et al. The unusual predominance of maintenance DNA methylation in Spirodela polyrhiza . G3 Genes, Genomes, Genet. 2024; (August 2023). https://doi.org/10.1093/g3journal/jkae004.

Cao HX, Vu GTH, Wang W, Messing J, Schubert I. Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol. 2015; 17(s1):120-4.

Feil R, Fraga MF. Epigenetics and the environment: Emerging patterns and implications. Nat Rev Genet. 2012;13(2):97-109.

Norouzitallab P, Baruah K, Vanrompay D, Bossier P. Can epigenetics translate environmental cues into phenotypes? Sci Total Environ. 2019; 647:1281-1293.

J.M. Lynch, A. Wiseman FAAMDL. Ecotoxicology. (Levin SA, ed.). Elsevier; 2001.

Vandegehuchte MB, Janssen CR. Epigenetics in an ecotoxicological context. Mutat Res - Genet Toxicol Environ Mutagen. 2014; 764-765:36-45.

Skinner MK. Environmental epigenetics and a unified theory of the molecular aspects of evolution: A neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol Evol. 2015; 7(5):1296-302.

Kishimoto S, Uno M, Okabe E, Nono M, Nishida E. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat Commun. 2017; 8:1-7.

Youngson NA, Whitelaw E. Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet. 2008; 9:233-57.

Reik W, Walter J. Evolution of imprinting mechanisms: The battle of the sexes begins in the zygote. Nat Genet. 2001; 27(3):255-6.

Matthew D. Anway, Cupp A. Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility. Science (80- ). 2005; 308(5727):1466-9.

Vandegehuchte MB, Janssen CR. Epigenetics and its implications for ecotoxicology. Ecotoxicology. 2011; 20(3):607-24.

Vandegehuchte MB, Lemière F, Vanhaecke L, Vanden Berghe W, Janssen CR. Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation. Comp Biochem Physiol - C Toxicol Pharmacol. 2010; 151(3):278-85.

Harris KDM, Bartlett NJ, Lloyd VK. Daphnia as an Emerging Epigenetic Model Organism. Genet Res Int. 2012; 2012:1-8.

Jeremias G, Veloso T, Gonçalves FJM, Van Nieuwerburgh F, Pereira JL, Asselman J. Multigenerational DNA methylation responses to copper exposure in Daphnia: Potential targets for epigenetic biomarkers? Chemosphere. 2022; 308(P1):136231.

Bell AM, Stein LR. Transgenerational and developmental plasticity at the molecular level: Lessons from Daphnia. Mol Ecol. 2022; 26(19):4859-61.

Nederstigt TAP, Peijnenburg WJGM, Blom R, Vijver MG. Correlation analysis of single- and multigenerational endpoints in Daphnia magna toxicity tests: A case-study using TiO2 nanoparticles. Ecotoxicol Environ Saf. 2022; 241(June):113792.

Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol. 2018; 27(13):2790-806.

Yu ZY, Chen XX, Zhang J, Wang R, Yin DQ. Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicol Environ Saf. 2013; 88:178-84.

Sun L, Liao K, Wang D. Comparison of transgenerational reproductive toxicity induced by pristine and amino modified nanoplastics in Caenorhabditis elegans. Sci Total Environ. 2021; 768:144362.

Whittle CA, Otto SP, Johnston MO, Krochko JE. Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany. 2009; 87(6):650-7.

Paun O, Verhoeven KJF, Richards CL. Opportunities and limitations of reduced representation bisulfite sequencing in plant ecological epigenomics. New Phytol. 2019; 221(2):738-42.

Hofmann GE. Ecological epigenetics in marine metazoans. Front Mar Sci. 2017; 4(JAN):1-7.

Noordhoek JW, Koning JT, Mariën J, et al. Exploring DNA methylation patterns in copper exposed Folsomia candida and Enchytraeus crypticus. Pedobiologia (Jena). 2018; 66(September):52-7.

Burggren WW. Dynamics of epigenetic phenomena: Intergenerational and intragenerational phenotype “washout”. J Exp Biol. 2015; 218(1):80-7.

Horemans N, Spurgeon DJ, Lecomte-Pradines C, et al. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. Environ Pollut. 2019; 251:469-83.

Creative Commons License

Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.

Direitos de Autor (c) 2025 Revista Espanhola de Saúde Ambiental

Downloads

Não há dados estatísticos.