Resumen
El acelerado crecimiento demográfico y los cambios en los hábitos de consumo de la población han incrementado la cantidad de desechos municipales que son recolectados y depositados en sitios de disposición final sin ningún tipo de tratamiento o selección de la fracción sólida. Como resultado de esta inadecuada gestión de residuos se favorece la generación de emisiones nocivas al ambiente, entre las que se encuentran los lixiviados, los cuales son líquidos tóxicos resultantes de la liberación de humedad proveniente de la descomposición de la fracción orgánica de los desechos y la percolación del agua de las precipitaciones pluviales a través de ellos que disuelven y arrastran contaminantes. Aunque la composición de los lixiviados depende de diferentes factores, en general se caracterizan por contener materia orgánica disuelta, metales pesados, macrocomponentes inorgánicos y compuestos orgánicos xenobióticos. Estos lixiviados han sido identificados como fuentes potenciales de contaminación de aguas subterráneas, ya que pueden infiltrarse a través del suelo y subsuelo causando la contaminación de extensas áreas del acuífero subyacente.
En este trabajo, se presenta una revisión de los contaminantes presentes en la composición de los lixiviados generados por desechos municipales, ejemplificando la contaminación del agua subterránea considerando la situación de la ciudad de Mérida, Yucatán, México, como caso de estudio. Se realiza una revisión de los procesos de migración y atenuación de los contaminantes en el acuífero, finalizando con propuestas y recomendaciones para la realización de análisis de riesgo por fuga de lixiviado de sitios de disposición de residuos sólidos municipales.
Citas
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucha D, Bottein MYD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, Van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human health and ocean pollution. Annals of Global Health. 2020; 86(1): 151, 1 - 64. https://doi.org/10.5334/aogh.2831
Marín-Beltrán I, Demaria F, Ofelio C, Serra LM, Turiel A, Ripple WJ, Mukul SA, Costa MC. Scientists' warning against the society of waste. Science of The Total Environment. 2022; 811, 151359. https://doi.org/10.1016/j.scitotenv.2021.151359
UN (United Nations) Global Population Growth and Sustainable Development. Department of Economic and Social Affairs, Population Division. New York: United Nations. 2021. Disponible en: https://www.un.org/development/desa/pd/. Recuperado el 12 de abril de 2022.
Iravanian A, Ravari SO. Types of contamination in landfills and effects on the environment: A review study. IOP Conference Series: Earth and Environmental Science. 2020; 614(1), 012083. https://doi.org/10.1088/1755-1315/614/1/012083
Parveen N, Singh DV, Azam R. Innovations in recycling for sustainable management of solid wastes. En: Innovative Waste Management Technologies for Sustainable Development, Bhat RA, Qadri H, Wani KA, Dar GH, Mehmood MA, Eds. 2020; pp. 177-210. IGI Global. 10.4018/978-1-7998-0031-6.ch010
Araiza-Aguilar JA, Cram-Heydrich S, Ruiz-Rivera N, Oropeza-Orozco O, Fernández-Lomelín MDP, Rojas-Valencia MN. What does ‘risk’ mean in municipal solid waste management? Investigaciones geográficas. 2021; 105, e60268. https://doi.org/10.14350/rig.60268
Khan S, Anjum R, Raza ST, Bazai NA, Ihtisham M. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere. 2022; 288, Part 1, 132403. https://doi.org/10.1016/j.chemosphere.2021.132403
Arici OK. Geological factors in solid waste landfill site selection. Advanced Engineering Science. 2022; 2, 35-43. Recuperado el 8 de noviembre de 2024 de https://publish.mersin.edu.tr/index.php/ades/article/view/61
Kawai K, Tasaki T. Revisiting estimates of municipal solid waste generation per capita and their reliability. Journal of Material Cycles and Waste Management. 2016; 18(1), 1-13. https://doi.org/10.1007/s10163-015-0355-1
Shekdar AV. Sustainable solid waste management: An integrated approach for Asian countries. Waste Management. 2009; 29(4), 1438 - 1448. https://doi.org/10.1016/j.wasman.2008.08.025
UNEP (United Nations Environment Programme). Global Waste Management Outlook 2024: Beyond an age of waste – Turning rubbish into a resource. Nairobi. 2024; Disponible en: https://wedocs.unep.org/20.500.11822/44939
David VE, John Y, Hussain S. Rethinking sustainability: a review of Liberia’s municipal solid waste management systems, status, and challenges. Journal of Material Cycles and Waste Management. 2020; 22(5), 1299-1317. https://doi.org/10.1007/s10163-020-01046-x
Ferronato N, Torretta V. Waste mismanagement in developing countries: A review of global issues. International journal of environmental research and public health. 2019; 16(6): 1060. https://doi.org/10.3390/ijerph16061060
Karak T, Bhagat RM, Bhattacharyya P. Municipal solid waste generation, composition, and management: The world scenario. Critical Reviews in Environmental Science and Technology. 2012; 42(15), 1509-1630. https://doi.org/10.1080/10643389.2011.569871
Raviteja KVNS, MunwarBasha B. Probabilistic back analysis of Koshe landfill slope failure. In Indian Geotechnical Conference. 2017; December.
Xu Q, Peng D, Li W, Dong X, Hu W, Tang M, Liu F. The catastrophic landfill flowslide at Hongao dumpsite on 20 December 2015 in Shenzhen, China. Natural Hazards and Earth System Sciences. 2017; 17(2), 277-290. https://doi.org/10.5194/nhess-17-277-2017
Zhang Z, Wang Y, Fang Y, Pan X, Zhang J, Xu H. Global study on slope instability modes based on 62 municipal solid waste landfills. Waste Management Research. 2020; 38(12), 1389-1404. https://doi.org/10.1177/0734242x20953486
Buenrostro O, Bocco G. Solid waste management in municipalities in Mexico: goals and perspectives. Resources, Conservation and Recycling. 2003; 39(3), 251 - 263. https://doi.org/10.1016/S0921-3449(03)00031-4
Reneu S, Givaudan J, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials. 2008; 150 (3), 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077
Reddy PJ. Municipal solid waste management: processing, energy recovery, global examples. Hyderabad, India. Taylor and Francis Group, CRC Press. 2011.
Sabahi AE, Rahim AS, Zuhairi W, Nozaily AF, Alshaebi F. The characteristics of leachate and groundwater pollution at municipal solid waste landfill of lbb city, Yemen. American Journal of Environmental Science. 2009; 5 (3), 256-266. https://doi.org/10.3844/ajessp.2009.256.266
World Health Organization/Istituto per i Rapporti Internazionali di Sanita. Urban solid waste management. Firenze, Italia. Iris. 1993.
Jaramillo J. Guía para el diseño, construcción y operación de rellenos sanitarios manuales. Una soloción a la disposición final de residuos sóliods municipales en pequeñas poblaciones. Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente. División de Salud y Ambiente. Organización Panamericana de la Salud (OPS/CEPIS). Colombia. 2002.
Uche JJ. The Impact of Solid Waste Dumpsites on Ambient Air Quality in Obio/Akpor Local Government Area, Rivers State: A Case Study of Nkpolu Community. Pacific Journal of Science and Technology. 2021; 22(2), 272-279.
Nyika J, Dinka M, Onyari E. Effects of landfill leachate on groundwater and its suitability for use. Materials Today: Proceedings, 57, Part 2. 2022; 958-963. https://doi.org/10.1016/j.matpr.2022.03.239
Narayana T. Municipal solid waste management in India: From waste disposal to recovery of resources? Waste management. 2009; 29(3), 1163 1166. https://doi.org/10.1016/j.wasman.2008.06.038
Sohoo I, Ritzkowski M, Sultan M, Farooq M, Kuchta K. Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan. Sustainability. 2022; 14(6), 3364. https://doi.org/10.3390/su14063364
Mavropoulos A, Newman D. Wasted Health: The Tragic Case of Dumpsites. International Solid Waste Association, Viena, Austria. 2015.
Ma S, Zhou C, Pan J, Yang G, Sun C, Liu Y, Zhao Z. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. Journal of Cleaner Production. 2022; 333, 130234. https://doi.org/10.1016/j.jclepro.2021.130234
Schiopu AM, Gavrilescu M. Municipal solid waste landfilling and treatment of resulting liquid effluents. Environmental Engineering and Management Journal (EEMJ). 2010; 9(7), 993 - 1019.
Schiopu AM, Gavrilescu M. Options for the treatment and management of municipal landfill leachate: common and specific issues. CLEAN–Soil, Air, Water. 2010; 38(12), 1101-1110. https://doi.org/10.1002/clen.200900184
Vaverková MD. Landfill impacts on the environment - Review. Geosciences. 2019; 9(10), 431. https://doi.org/10.3390/geosciences9100431
Varank G, Adiller A, Güvenç SY, Adar E, Demir A. Evaluation of Contaminant Transport Through Alternative Liner Systems from Leachate to Groundwater Using One-Dimensional Mass Transport Model. En: Recycling and Reuse Approaches for Better Sustainability. Balkaya N, Guneysu S. (eds). Environmental Science and Engineering(). Springer, Cham. 2019; pp. 87-95. https://doi.org/10.1007/978-3-319-95888-0_8
Xu Y, Xue X, Dong L, Nai C, Liu Y, Huang Q. Long-term dynamics of leachate production, leakage from hazardous waste landfill sites and the impact on groundwater quality and human health. Waste management. 2018; 82, 156-166. https://doi.org/10.1016/j.wasman.2018.10.009
Sun XC, Xu Y, Liu YQ, Nai CX, Dong L, Liu JC, Huang QF. Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. Journal of Cleaner Production. 2019; 224, 335-345. https://doi.org/10.1016/j.jclepro.2019.03.200
Ančić M, Huđek A, Rihtarić I, Cazar M, Bačun-Družina V, Kopjar N, Durgo K. Physico chemical properties and toxicological effect of landfill groundwaters and leachates. Chemosphere. 2020; 238, 124574. https://doi.org/10.1016/j.chemosphere.2019.124574
El Fadili H, Ali MB, El Mahi M, Cooray AT. A comprehensive health risk assessment and groundwater quality for irrigation and drinking purposes around municipal solid waste sanitary landfill: A case study in Morocco. Environmental Nanotechnology, Monitoring & Management. 2022; 18, 100698. https://doi.org/10.1016/j.enmm.2022.100698
Guo Y, Li P, He X, Wang L. Groundwater quality in and around a landfill in northwest China: characteristic pollutant identification, health risk assessment, and controlling factor analysis. Exposure and Health. 2022; 14, 885-901. https://doi.org/10.1007/s12403-022-00464-6
SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). Norma Oficial Mexicana NOM-001-SEMARNAT-2021, Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. Ciudad de México. 2021.
SCFI (Secretaría de Comercio y Fomento Industrial). Norma Mexicana NMX-AA-087-SCFI-2010. Análisis de agua – Evaluación de toxicidad aguda con Daphnia magna, Strauss (Crustacea-Cladocera) – Método de prueba. Ciudad de México. 2010.
Przydatek G. The analysis of the possibility of using biological tests for assessment of toxicity of leachate from an active municipal landfill. Environmental Toxicology and Pharmacology. 2019; 67, 94 - 101. https://doi.org/10.1016/j.etap.2019.01.013
Chen DMC, Bodirsky BL, Krueger T, Mishra A, Popp A. The world’s growing municipal solid waste: trends and impacts. Environmental Research Letters. 2020; 15(7), 074021. https://doi.org/10.1088/1748-9326/ab8659
Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH. Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology. 2002; 32(4), 297-336. https://doi.org/10.1080/10643380290813462
Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of The Total Environment. 2020; 703, 135468. https://doi.org/10.1016/j.scitotenv.2019.135468
Dibyanshu K, Chhaya T, Raychoudhury T. A review on the fate and transport behavior of engineered nanoparticles: possibility of becoming an emerging contaminant in the groundwater. International Journal of Environmental Science and Technology. 2023; 20, 4649-4672. https://doi.org/10.1007/s13762-021-03835-9
Essien JP, Ikpe DI, Inam ED, Okon AO, Ebong GA, Benson NU. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. “Plos one”. 2022; 17(2), e0263279. https://doi.org/10.1371/journal.pone.0263279
Jin Q, Tao D, Lu Y, Sun J, Lam CH, Su G, He Y. New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate. Journal of Hazardous Materials. 2022; 423, Part B, 127146. https://doi.org/10.1016/j.jhazmat.2021.127146
Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu BCL, Vithanage M. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials. 2022; 421,126627, https://doi.org/10.1016/j.jhazmat.2021.126627.
Tsydenova N, Vázquez Morillas A, Cruz Salas AA. Sustainability assessment of waste management system for Mexico City (Mexico) - based on analytic hierarchy process. Recycling. 2018; 3(3), 45. https://doi.org/10.3390/recycling3030045
Rajoo KS, Karam DS, Ismail A, Arifin A. Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC). Environmental Nanotechnology, Monitoring & Management. 2020; 14, 100372. https://doi.org/10.1016/j.enmm.2020.100372
Mama CN, Nnaji CC, Nnam JP, Opata OC. Environmental burden of unprocessed solid waste handling in Enugu State, Nigeria. Environmental Science and Pollution Research. 2021; 28(15), 19439-19457. https://doi.org/10.1007/s11356-020-12265-y
Costa AM, Alfaia RGDSM, Campos JC. Landfill leachate treatment in Brazil–An overview. Journal of Environmental Management. 2019; 232, 110 - 116. https://doi.org/10.1016/j.jenvman.2018.11.006
Daniel AN, Ekeleme IK, Onuigbo CM, Ikpeazu VO, Obiekezie SO. Review on effect of dumpsite leachate to the environmental and public health implication. GSC Advanced Research and Reviews. 2021; 7(2), 051-060. https://doi.org/10.30574/gscarr.2021.7.2.0097
Aziz HA, Ramli SF. Recent development in sanitary landfilling and landfill leachate treatment in Malaysia. International Journal of Environmental Engineering. 2018; 9(3-4), 201-229. https://doi.org/10.1504/IJEE.2018.097517
Lindamulla L, Nanayakkara N, Othman M, Jinadasa S, Herath G, Jegatheesan V. Municipal Solid Waste Landfill Leachate Characteristics and Their Treatment Options in Tropical Countries. Current Pollution Reports. 2022; 8, 273 - 287. https://doi.org/10.1007/s40726-022-00222-x
Ghosh P, Gupta A, Thakur IS. Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi, India. Environmental Science and Pollution Research. 2015; 22(12), 9148-9158. https://doi.org/10.1007/s11356-015-4077-7
Alimba CG, Adewumi OO, Binuyo OM, Odeigah PG. Wild black rats (Rattus rattus Linnaeus, 1758) as zoomonitor of genotoxicity and systemic toxicity induced by hazardous emissions from Abule Egba unsanitary landfill, Lagos, Nigeria. Environmental Science and Pollution Research. 2021; 28, 10603–10621. https://doi.org/10.1007/s11356-020-11325-7
Kundariya N, Mohanty SS, Varjani S, Ngo HH, Wong JW, Taherzadeh MJ, Bui XT. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology. 2021; 342, 125982. https://doi.org/10.1016/j.biortech.2021.125982
SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). Diagnóstico básico para la gestión integral de los residuos. 2020. Accesado el 21 de octubre de 2024. https://www.gob.mx/cms/uploads/attachment/file/554385/DBGIR-15-mayo-2020.pdf
INEGI (Instituto Nacional de Estadística Geografía e Informática). Censo nacional de gobiernos municipales y demarcaciones territoriales de la ciudad de México 2023. Documento de diseño. 2024. Acessado el 24 de octubre de 2024. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/889463915713.pdf
SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). Norma Oficial Mexicana NOM-083-SEMARNAT-2021. Especificaciones de protección ambiental para la selección del sitio, diseño, construcción, operación, monitoreo, clausura y obras complementarias de un sitio de disposición final de residuos sólidos urbanos y de manejo especial. Ciudad de México. 2003.
Archundia L. Diseño, construcción y operación de rellenos sanitarios sobre material cárstico. El caso de Mérida, Yucatán. XXII Congreso Interamericano de AIDIS. 2000; pp. 6 - 7. Porto Alegre, Brasil.
Pérez R, Pacheco J. Vulnerabilidad del agua subterránea a la contaminación de nitratos en el estado de Yucatán. Ingeniería Revista Académica. 2004; 8(1), 33-42.
Foster S, Hirata R, Gómez DD, D'Elia M, Paris M. Protección de la calidad del agua subterránea - guía para empresas de agua, autoridades municipales y ambientales. Washington D.C., USA: World Bank. 2002. Recuperado el 8 de noviembre de 2024 de: https://documents1.worldbank.org/curated/fr/229001468205159997/pdf/25071PUB01Spanish10BOX0334116B01PUBLIC1.pdf
Méndez-Novelo R, Cachon-Sandoval E, Sauri-Riancho M, Quintal-Franco C, Castillo-Borges E. Influencia del material de cubierta en la composición de los lixiviados en un relleno sanitario. Ingeniería Revista Académica. 2002; 6(2), 7-12.
Méndez-Novelo RI, Pietrogiovanna-Bronca JA, Santos-Ocampo B, Sauri-Riancho MR, Giácoman-Vallejos G, Castillo-Borges ER. Determinación de la dósis óptima de reactivo Fenton en un tratamiento de lixiviados por Fenton-adsorción. Revista Internacional de Contaminación Ambiental. 2010; 26(3), 211-220.
Méndez-Novelo RI, García-Reyes RB, Castillo-Borges ER, Sauri-Riancho MR. Treating leachate by Fenton oxidation. Ingeniería e Investigación. 2010; 30(1), 80-85. http://dx.doi.org/10.15446/ing.investig.v30n1.15212
Méndez-Novelo RI, Cervantes-Cocom GA, San-Pedro L, Zetina-Moguel C, Quintal-Franco C, Giácoman-Vallejos G. Regeneration of granular activated carbon clogged in the treatment of leachates. Environmental Science and Pollution Research. 2023; 30(18), 53833-53846. https://doi.org/10.1007/s11356-023-25724-z
Ramírez-Sosa DR, Castillo-Borges ER, Méndez-Novel RI, Sauri-Riancho MR, Barceló-Quintal M, Marrufo-Gómez JM. Determination of organic compounds in landfill leachates treated by Fenton–Adsorption. Waste management. 2013; 33(2), 390-395. https://doi.org/10.1016/j.wasman.2012.07.019
Ku LD. Caracterización de los sólidos generados en la aplicación del proceso Fenton-Filtración-Adsorción a lixiviados. Tesis (maestría), Universidad Autónoma de Yucatán, México. 2012.
Escalante-Mañé A, Méndez-Novelo RI, Giácoman-Vallejos G, González-Sánchez A, Romo-Alvarado J, Collí-Dulá RC, Quintal-Franco CA, Puch-Hau C. Enhanced removal of persistent contaminants and toxicity reduction through the application of a triple-stage Fenton process to sanitary landfill leachates from Yucatan, Mexico. Química Nova. 2022; 45(06), 659-665. https://doi.org/10.21577/0100-4042.20170866
Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron G. Biogeochemistry of landfill leachate plumes. Applied Geochemistry. 2001; 16(7 - 8), 659-718. https://doi.org/10.1016/S0883-2927(00)00082-2
González-Herrera RA. Evolution of groundwater contamination in the Yucatán karstic aquifer. Tesis (maestría), University of Waterloo, Canadá. 1992.
MacFarlane DS, Cherry JA, Gillham RW, Sudicky EA. Migration of contaminants in groundwater at a landfill: A case study. 1. Groundwater flow and plume delineation. Journal of Hydrology. 1983; 63(1 – 2), 1 – 29, https://doi.org/10.1016/0022-1694(83)90221-4
Kjeldsen P, Bjerg PL, Rügge K, Christensen TH, Pedersen JK. Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source: landfill hydrology and leachate migration. Waste Management & Research. 1998; 16(1), 3 - 13. https://doi.org/10.1177/0734242X9801600102
Kimmel GE, Braids OC. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York. US Geological Survey. Professional Paper 1085. 1980. https://doi.org/10.3133/pp1085
Casares-Salazar R, González-Herrera R, Graniel-Castro E. Field scale longitudinal dispersivities estimation in a karstic aquifer. International Journal of Water. 2013; 7(1 – 2), 14 - 28. https://doi.org/10.1504/IJW.2013.051976
Canul-Macario C, González-Herrera R, Sánchez-Pinto I. Graniel-Castro E. Contribution to the evaluation of solute transport properties in a karstic aquifer (Yucatan, Mexico). Hydrogeology Journal. 2019; 27, 1683–1691. https://doi.org/10.1007/s10040-019-01947-8
González-Herrera R, Gómez-López R. Two in one leachate plume in a karstic aquifer. Environmental Earth Sciences. 2013; 68(7), 1945-1953. https://doi.org/10.1007/s12665-012-1882-x
González R, Vadillo I, Rodríguez R, Carrasco F. Sistema redox en un acuífero carbonatado afectado por lixiviado de basureros. Revista Latinoamericana de Hidrogeologia. 2004; 4, 71 - 79.
González-Herrera R, Rodríguez-Castillo R, Coronado-Peraza V. Atenuación natural en el acuífero yucateco. Revista Internacional de Contaminación Ambiental. 2007; 23(1), 5-15.
González-Herrera R, Vázquez-Mújica P, Canto-Ríos J. Interactions of waste disposal site leachate with the Merida karst aquifer, Mexico. Journal of Hydrology. 2023; 620(2023), 129436. https://doi.org/10.1016/j.jhydrol.2023.129436

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2025 Revista de Salud Ambiental
