¿Influyen la contaminación atmosférica y las variables meteorológicas en la mortalidad por COVID-19? Estudio comparativo de series temporales entre la primera y segunda ola en nueve provincias españolas
RSA 22 (1) 2022
PDF

Palabras clave

COVID-19
contaminación atmosférica
variables meteorológicas
tasa de mortalidad

Cómo citar

Bañuelos Gimeno, J., Blanco, A., Díaz, J., Linares, C., López, J. A., Navas, M. A., Sánchez-Martínez, G., Luna, Y., Hervella, B., Belda, F., & Culqui, D. (2022). ¿Influyen la contaminación atmosférica y las variables meteorológicas en la mortalidad por COVID-19? Estudio comparativo de series temporales entre la primera y segunda ola en nueve provincias españolas. Revista De Salud Ambiental, 22(1), 100–112. Recuperado a partir de https://www.ojs.diffundit.com/index.php/rsa/article/view/1142

Resumen

Algunos contaminantes como las PM10, el NO2 o el O3 tienen influencia en la salud de las personas, tal y como apuntan numerosos estudios al relacionarse con la mortalidad tanto a corto como a largo plazo. Se estudió una muestra de 9 de las 52 provincias españolas. Se realizaron modelos lineales generalizados (GLM) con link Poisson en los periodos de la primera y segunda ola entre los valores medios diarios de las variables independientes (PM10, NO2 y O3 como contaminantes atmosféricos y variables meteorológicas (temperatura máxima diaria y humedad absoluta)) y la variable dependiente (tasa de mortalidad por COVID-19, TMC) durante la primera y segunda ola. Entre las variables independientes y la dependiente se establecieron los retardos estadísticamente significativos (lag). A partir de los estimadores obtenidos en los GLM se calcularon los riesgos relativos asociados, por aumentos de 10 μg/m3 para los contaminantes atmosféricos, 1 ºC para la temperatura máxima y 1 g/m3 para la humedad absoluta. Los resultados muestran que existe una mayor asociación del NO2 con la TMC que para el resto de los contaminantes atmosféricos. Las variables meteorológicas examinadas no han presentado una asociación robusta entre ambas olas, lo que indica un rol menor en relación a la TMC. En conclusión, la contaminación atmosférica por NO2 y PM10 presentan una asociación estadísticamente significativa con la TMC, aunque limitada y subordinada a otros factores como las medidas de salud pública adoptadas, la presencia de comorbilidades y la edad del paciente.

PDF

Citas

WHO. Virtual press conference on COVID-19 - 11 March 2020. World Health Organization. 2020.

Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020; 91(1):157–160. doi:10.23750/abm.v91i1.9397

Amâncio CT, Nascimento LFC. Asthma and air pollutants: a time series study. Rev. Assoc. Med. Bras. (English Edition). 2012; 58(3):302–307. doi: https://doi.org/10.1016/S2255-4823(12)70199-6.

Saez M, Figueiras A, Ballester F, Pérez-Hoyos S, Ocaña R, Tobías A. Comparing meta-analysis and ecological-longitudinal analysis in time-series studies. A case study of the effects of air pollution on mortality in three Spanish cities. J. Epidemiol. Community Health. 2001; 55(6):423–432. doi: https://doi.org/10.1136/jech.55.6.423.

Gobierno de España. Ley 34/2007, de 15 de noviembre, de calidad del aire y protección de la atmósfera. Boletín Oficial del Estado. 2007; 275 (16 de noviembre de 2007):16241–16260.

Chen TM, Gokhale J, Shofer S, Kuschner WG. Outdoor air pollution: Ozone health effects. Am. J. Med. Sci. 2007; 333(4):244–248. doi: https://doi.org/10.1097/MAJ.0b013e31803b8e8c.

Chen TM, Gokhale J, Shofer S, Kuschner WG. Outdoor air pollution: Particulate matter health effects. Am. J. Med. Sci. 2007; 333(4):235–243. doi: https://doi.org/10.1097/MAJ.0b013e31803b8dcc.

Kampa M, Castanas E. Human health effects of air pollution. Environ. Pollut. 2008; 151(2):362–367. doi: https://doi.org/10.1016/j.envpol.2007.06.012.

Adamkiewicz G, Liddie J, Graffin JM. The respiratory risks of ambient/outdoor air pollution. Clin. Chest Med. 2020; 41(2020):809–824. doi: https://doi.org/10.1016/j.ccm.2020.08.013.

Ab Manan N, Aizuddin AN, Hod R. Effect of air pollution and hospital admission: A systematic review. Ann. Glob. Health. 2018; 84(4):670–678. doi: https://doi.org/10.29024/aogh.2376.

Rosa C, Julia C, María E, Jonathan K, Alberto E, Rocío G, et al. Short-Term Associations between Morbidity and Air Pollution in Metropolitan Area of Monterrey , Mexico. Atmosphere. 2021; 12(1352). doi: https://doi.org/10.3390/atmos12101352.

Díaz J, Antonio-López-Bueno J, Culqui D, Asensio C, Sánchez-Martínez G, Linares C. Does exposure to noise pollution influence the incidence and severity of COVID-19? Environ. Res. 2021;.195. doi: https://doi.org/10.1016/j.envres.2021.110766.

Liu Y, Pan J, Zhang H, Shi C, Li G, Peng Z, J, et al. Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. En: New Insights into the Iron Age Archaeology of Edom, Southern Jordan. 2019; viii–viii. doi: https://doi.org/10.2307/j.ctvdjrq5c.3.

Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Signorelli SS, et al. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: A systematic review. Environ. Res. 2020;.191:110129. doi: https://doi.org/10.1016/j.envres.2020.110129.

Travaglio M, Yu Y, Popovic R, Selley L, Leal NS, Martins LM. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021; 268:115859. doi: https://doi.org/10.1016/j.envpol.2020.115859.

Linares C, Culqui D, Belda F, López-Bueno JA, Luna Y, Sánchez-Martínez G, et al. Impact of environmental factors and Sahara dust intrusions on incidence and severity of COVID-19 disease in Spain. Effect in the first and second pandemic waves. Environ. Sci. Pollut. Res. 2021;19. doi: https://doi.org/10.1007/s11356-021-14228-3.

de Kok TMCM, Driece HAL, Hogervorst JGF, Briedé JJ. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat. Res. - Rev. Mutat. Res. 2006;.613(2–3):103–122. doi: https://doi.org/10.1016/j.mrrev.2006.07.001.

Querol X, Alastuey A, Viana MM, Rodriguez S, Artiñano B, Salvador P, et al. Speciation and origin of PM10 and PM2.5 in Spain. J. Aerosol Sci. 2004; 35(9):1151–1172. doi: https://doi.org/10.1016/j.jaerosci.2004.04.002.

Maleki M, Anvari E, Hopke PK, Noorimotlagh Z, Mirzaee SA. An updated systematic review on the association between atmospheric particulate matter pollution and prevalence of SARS-CoV-2. Environ. Res. 2021; 195:110898. doi: https://doi.org/10.1016/j.envres.2021.110898.

Logan JA. Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence. J. Geophys. Res. 1985; 90(6):463–482.

Díaz J, Linares C. Impacto de la contaminación atmosférica sobre la mortalidad diaria a corto plazo en España. Rev. Salud Ambient. 2018; 18(2):120–136.

Tang JW. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface. 2009; 6(Suppl. 6). doi: https://doi.org/10.1098/rsif.2009.0227.focus.

Vokó Z, Pitter JG. The effect of social distance measures on COVID-19 epidemics in Europe: an interrupted time series analysis. GeroScience. 2020; 42(4):1075–1082. doi: https://doi.org/10.1007/s11357-020-00205-0.

Yin H, Sun T, Yao L, Jiao Y, Ma L, Lin L, et al. Association between population density and infection rate suggests the importance of social distancing and travel restriction in reducing the COVID-19 pandemic. Environ. Sci. Pollut. Res. 2021; 28(30):40424-40430. doi: https://doi.org/10.1007/s11356-021-12364-4.

Mecenas P, da Rosa Moreira Bastos RT, Rosário Vallinoto AC, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS ONE. 2020; 15:1–21. doi: https://doi.org/10.1371/journal.pone.0238339.

McClymont H, Hu W. Weather variability and covid-19 transmission: A review of recent research. Int. J. Environ. Res. Public Health. 2021;18(2):1–19. doi: https://doi.org/10.3390/ijerph18020396.

Ujiie M, Tsuzuki S, Ohmagari N. Effect of temperature on the infectivity of COVID-19. Int. J. Infect. Dis. 2020; 95:301–303. doi: https://doi.org/10.1016/j.ijid.2020.04.068.

Smit AJ, Fitchett JM, Engelbrecht FA, Scholes RJ, Dzhivhuho G, Sweijd NA. Winter is coming: A southern hemisphere perspective of the environmental drivers of sars-cov-2 and the potential seasonality of covid-19. Int. J. Environ. Res. Public Health. 2020; 17(16):1–28. doi: https://doi.org/10.3390/ijerph17165634.

Rosario DKA, Mutz YS, Bernardes PC, Conte-Junior CA. Relationship between COVID-19 and weather: Case study in a tropical country. Int. J. Hyg. Environ. Health. 2020; 229:113587. doi: https://doi.org/10.1016/j.ijheh.2020.113587.

Center for Disease Control. Coronavirus (COVID-19) frequently asked questions. CDC. 2020. [actualizado en octubre de 2021; citado el 15 de noviembre de 2021]. Disponible en: https://www.cdc.gov/coronavirus/2019-ncov/faq.html

Lipsitch M, Swerdlow DL, Finelli L. Defining the Epidemiology of Covid-19 - Studies Needed. N. Engl. J. Med. 2020; 382(13):1194–1196. doi: https://doi.org/10.1056/nejmp2002125.

The Centre for Evidence-Based Medicine. Effect of Latitude on COVID-19. CEMB. 2020.

Sajadi MM, Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, et al. Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Netw. Open. 2020; 3(6):1–11. doi: https://doi.org/10.1001/jamanetworkopen.2020.11834.

Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biology. 2010; 8(2). doi: https://doi.org/10.1371/journal.pbio.1000316.

Jingyuan W, Tang F, Lin X, Lv W, Kun C, Wang F. Impact of Temperature and Relative Humidity on the Transmission of COVID-19: A Modeling Study in China and the United States. BMJ Open. 2020; 11(2).

Hervella B, Luna MY, Díaz J, Linares C, Belda F. “Spatial Variability of COVID-19 First Wave Severity and Transmission Intensity in Spain: The Influence of Meteorological Factors.” Biomed. J. Sci. & Tech. Res. 2021; 35(2). doi: https://doi.org/10.26717/bjstr.2021.35.005667.

Barceló MA, Saez M. Methodological limitations in studies assessing the effects of environmental and socioeconomic variables on the spread of COVID-19: a systematic review. Environ. Sci Europe. 2021; 33(1). doi: https://doi.org/10.1186/s12302-021-00550-7.

Martinez GS, Linares C, de’Donato F, Diaz J. Protect the vulnerable from extreme heat during the COVID-19 pandemic. Environ. Res. 2020; 187:109684. doi: https://doi.org/10.1016/j.envres.2020.109684.

WMO. First Report of the WMO COVID-19 Task Team Review on Meteorological and Air Quality Factors Affecting the COVID-19 Pandemic. World Meteorological Organization; 2021.

Iribarne JV, Cho H-R. Atmospheric Thermodynamics and Vertical Stability. En:. Iribarne JV, Cho H-R. (Eds.), Atmospheric Physics. Springer Netherlands; 1980. p. 79–96. doi: https://doi.org/10.1007/978-94-009-8952-8_4.

Bolaño-Ortiz TR, Camargo-Caicedo Y, Puliafito SE, Ruggeri MF, Mayor-Bracero OL, Torres-Delgado E, et al. Spread of SARS-CoV-2 through Latin America and the Caribbean region: A look from its economics conditions, climate and air indicators. Environ. Res. 2020; 191(109938). doi: https://doi.org/10.1016/j.envres.2020.109938.

Quesada JA, Gutiérrez F. Período de incubación de la COVID-19 : revisión sistemática y metaanálisis. Rev. Clin. Esp. 2021; 221(2):109–117. doi: https://doi.org/10.1016/j.rce.2020.08.005.

Baldasano JM. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020; 741(2). doi: https://doi.org/10.1016/j.scitotenv.2020.140353.

Grange SK, Farren NJ, Vaughan AR, Rose RA, Carslaw DC. Strong Temperature Dependence for Light-Duty Diesel Vehicle NOx Emissions. Environ. Sci. Tech. 2019; 53(11):6587–6596. doi: https://doi.org/10.1021/acs.est.9b01024.

He MZ, Kinney PL, Li T, Chen C, Sun Q, Ban J, et al. Short- and intermediate-term exposure to NO2 and mortality: A multi-county analysis in China. Environ. Pollut. 2020; 261(2):114165. doi: https://doi.org/10.1016/j.envpol.2020.114165.

Kim D, Chen Z, Zhou L-F, Huang S-X. Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 2018; 4(2):75–94. doi: https://doi.org/10.1016/j.cdtm.2018.03.003.

Cheng MH, Chiu HF, Yang CY. Coarse particulate air pollution associated with increased risk of hospital admissions for respiratory diseases in a Tropical city, Kaohsiung, Taiwan. Int. J. Environ. Res. Public Health. 2015; 12(10):13053–13068. doi: https://doi.org/10.3390/ijerph121013053.

Hutter HP, Poteser M, Moshammer H, Lemmerer K, Mayer M, Weitensfelder L, et al. Air pollution is associated with COVID-19 incidence and mortality in Vienna, Austria. Int. J. Environ. Res. Public Health. 2020; 17(24):1–11. doi: https://doi.org/10.3390/ijerph17249275.

Magazzino C, Mele M, Schneider N. The relationship between air pollution and COVID-19-related deaths: An application to three French cities. Appl. Energy. 2020; 279:115835. doi: https://doi.org/10.1016/j.apenergy.2020.115835.

Briz-Redón Á, Belenguer-Sapiña C, Serrano-Aroca Á. Changes in air pollution during COVID-19 lockdown in Spain: A multi-city study. J. Environ. Sci. (China). 2021; 101:16–26. doi: https://doi.org/10.1016/j.jes.2020.07.029.

López-Bueno JA, Díaz J, Follos F, Vellón JM, Navas MA, Culqui D, et al. Evolution of the threshold temperature definition of a heat wave vs. evolution of the minimum mortality temperature: a case study in Spain during the 1983–2018 period. Environ. Sci. Eur. 2021; 33(1). doi: https://doi.org/10.1186/s12302-021-00542-7.

Liu J, Zhou J, Yao J, Zhang X, Li L, Xu X, et al. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci. Total Environ. 2020; 726:138513. doi: https://doi.org/10.1016/j.scitotenv.2020.138513.

Şahin M. Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ. 2020; 728:138810. doi: https://doi.org/10.1016/j.scitotenv.2020.138810.

Islam ARMT, Hasanuzzaman M, Azad MAK, Salam R, Toshi FZ, Khan MSI, et al. Effect of meteorological factors on COVID-19 cases in Bangladesh. Environ. Dev. Sustain. 2021; 23(6):9139–9162. doi: https://doi.org/10.1007/s10668-020-01016-1.

Correa-Araneda F, Ulloa-Yáñez A, Núñez D, Boyero L, Tonin AM, Cornejo A, et al. Environmental determinants of COVID-19 transmission across a wide climatic gradient in Chile. Sci. Rep. 2021; 11(1):1–8. doi: https://doi.org/10.1038/s41598-021-89213-4.

Linares C, Belda F, López-Bueno JA, Luna MY, Sánchez-Martínez G, Hervella B, et al. Short-term associations of air pollution and meteorological variables on the incidence and severity of COVID-19 in Madrid (Spain): a time series study. Environ. Sci. Eur. 2021; 33(1):1–13. doi: https://doi.org/10.1186/s12302-021-00548-1.

Kodera S, Rashed EA, Hirata A. Correlation between COVID-19 morbidity and mortality rates in Japan and local population density, temperature, and absolute humidity. International J. Environ. Res. Public Health. 2020; 17(15):1–14. doi: https://doi.org/10.3390/ijerph17155477.

Gil P. Medicina Preventiva y Salud Pública. Fernández-Crehuet Navajas J, Gestal Otero JJ, Delgado Rodríguez M, Bolúmar Montrull F, Herruzo Cabrera R, Serra Majem L. (Eds.), Elsevier Masson SAS; 2015.

Villeneuve PJ, Goldberg MS. Methodological considerations for epidemiological studies of air pollution and the sars and COVID-19 coronavirus outbreaks. Environ. Health Perspect. 2020; 128(9):095001-1-095001–13. doi: https://doi.org/10.1289/EHP7411.

Baccini M, Mattei A, Mealli F, Bertazzi PA, Carugno M. Assessing the short term impact of air pollution on mortality: A matching approach. Environ. Health: Glob. Access Sci. Source. 2017; 16(1):1–12. doi: https://doi.org/10.1186/s12940-017-0215-7.

Fattorini D, Regoli F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 2020; 264:114732. doi: https://doi.org/10.1016/j.envpol.2020.114732.

Li H, Xu XL, Dai DW, Huang ZY, Ma Z, Guan YJ. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. Int. J. Infect. Dis. 2020; 97:278–282. doi: https://doi.org/10.1016/j.ijid.2020.05.076.

Samet JM, Dominici F, Zeger SL, Schwartz J, Dockery DW. The National Morbidity, Mortality, and Air Pollution Study. Part I: Methods and methodologic issues. Res Rep Health Eff Inst. 2000; (94 Pt 1):5-14; discussion 75–84.

Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimer’s Dement. 2015; 11(6):718–726. doi: https://doi.org/10.1016/j.jalz.2015.05.016.

Levin KA. Study design VI - ecological studies. Evid. Based Dent. 2006; 7(4):108. doi: https://doi.org/10.1038/sj.ebd.6400454.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 Revista de Salud Ambiental