Potes fumígenos, ovitrampas y otras herramientas con bajo impacto ambiental para controlar vinchucas y mosquitos
RSA 22 (1) 2022
PDF

Palabras clave

insectos vectores de enfermedades
control químico
resistencia a insecticidas
vinchucas
enfermedad de Chagas
mosquitos
dengue

Cómo citar

Reynoso, M. M., Alzogaray, R. A., Harburguer, L. V., Gonzalez, P. V., Lucía, A., Masuh, H. M., Roca Acevedo, G., Santo Orihuela, P. L., Toloza, A. C., Vassena, C. V., & Zerba, E. N. (2022). Potes fumígenos, ovitrampas y otras herramientas con bajo impacto ambiental para controlar vinchucas y mosquitos. Revista De Salud Ambiental, 22(1), 61–70. Recuperado a partir de https://www.ojs.diffundit.com/index.php/rsa/article/view/1131

Resumen

La chinche Triatoma infestans (conocida en Argentina como “vinchuca”) y cuatro especies de mosquitos (Aedes aegypti, Culex pipiens quinquefasciatus, Anopheles pseudopunctipennis y An. darlingi) son los principales insectos vectores de enfermedades en el territorio argentino. Desde 1977, el Centro de Investigaciones de Plagas e Insecticidas de Argentina (CIPEIN) investiga a estos insectos y desarrolla productos para controlarlos con un bajo impacto para la salud humana y el ambiente. Reconocido como Centro de Referencia por la Organización Panamericana de la Salud y la Organización Mundial de la Salud, el CIPEIN fue pionero en el desarrollo de productos insecticidas en América Latina. El objetivo de este artículo es reseñar la situación de la problemática sanitaria que involucra a vinchucas y mosquitos en Argentina, y describir los principales aportes del CIPEIN en su estudio y control.

PDF

Citas

Zerba EN. Desde la química a la toxicología en insectos. Ciencia e Investigación - Reseñas. 2015; 3:112-26.

Vassena C, Picollo MI, Zerba E. Insecticide resistance in Brazilian Triatoma infestans and Venezuelan Rhodnius prolixus. Med. Vet. Entomol. 2000; 14:1-5.

Seccacini E, Lucia A, Zerba E, Licastro S, Masuh H. Aedes aegypti resistance to temephos in Argentina. J. Am. Mosq. Control Assoc. 2008; 24:608-9.

Harburguer L, Masuh H, Zerba E, Licastro S. Primer hallazgo de resistencia a piretroides en adultos de Aedes aegypti en Argentina. En XVI Simposio sobre Control Epidemiológico de Enfermedades Transmitidas por Vectores. Buenos Aires, Argentina; 2013.

Ministerio de Salud. Curso sobre enfermedades vectoriales para agentes comunitarios en ambiente y salud. Buenos Aires: Ministerio de Salud de la Nación Argentina; 2010.

Organización Panamericana de la Salud/Organización Mundial de la Salud (OPS/OMS). Hoja informativa para trabajadores de la Salud: Enfermedad de Chagas. [actualizado en 2017; citado el 30 de julio de 2021]. Disponible en: https://www.paho.org/sites/default/files/2017-cha-chagas-hoja-informativa-trab.pdf.

World Health Organization (WHO). ¿Por qué se les dice “desatendidas”a algunas enfermedades tropicales? [Actualizado en 2012; citado el 30 de julio de 2021]. Disponible en: https://www.who.int/features/qa/58/es/.

Zerba EN. Pesticide evaluation scheme & global collaboration for development of pesticides for public health. Past and present of Chagas vector control and future needs. Geneva: World Health Organization (WHO); 1999.

Roussel Uclaf. Activity of K-othrine® against Triatominae, en Roussel Uclaf pyrethroid insecticides. For domestic, industrial, public health and stored products use. K-OTHRINE. 1979.

Casabé N, Melgar F, Wood E, Zerba E. Insecticidal activity of pyrethroids against Triatoma infestans. Insect. Science Applic. 1988; 9:233-6.

Alzogaray RA, Zerba EN. Temperature effect on the insecticidal activity of pyrethroids on Triatoma infestans. Comp. Biochem. Physiol. 1993; 104:485-8.

Alzogaray RA, Zerba EN. Incoordination, paralysis and recovery after pyrethroids treatments on third instars of Triatoma infestans. Mem. Inst. Oswaldo Cruz 1996; 92:431-5.

Alzogaray RA, Fontán A, Zerba EN. Evaluation of hyperactivity produced by pyrethroid treatment on nymph III of Triatoma infestans (Hemiptera: Reduviidae). Arch. Insect Biochem. Physiol. 1997; 35:323-33.

Alzogaray RA, Zerba EN. Third instar nymph of Rhodnius prolixus exposed to alpha-cyanopyrethroids: from hyperactivity to death. Arch. Insect Biochem. Physiol. 2001; 46:119-26.

Zerba EN, Wallace G, Picollo MI, Casabé N, Licastro SA, Wood E, et al. Evaluación de la beta-cipermetrina para el control de Triatoma infestans. Rev. Panam. Salud Publica 1997; 1:133-7.

Zerba EN. Monitoreo de la Resistencia en triatominos a través de la Red Latinoamericana (RELCOT). En monitoreo de la resistencia en triatominos en América Latina. Serie Enfermedades Transmisibles. Publicación Monográfica 1. Buenos Aires: Fundación Mundo Sano. [Actualizado en 2001; citado el 30 de Julio de 2021] Disponible en: https://www.mundosano.org/download/bibliografia/Monografia%201.pdf.

Alzogaray RA, Picollo M, Zerba E. Independent and joint action of cis and trans permethrin on Triatoma infestans. Arch. Insect Biochem. Physiol. 1998; 37:225-30.

Masuh HM, Seccacini E, Licastro SA, Zerba E. A new aqueous concentrate suspension of cis-permethrin and its insecticidal activity. Pest. Sci. 2000; 56:1-4.

Seccacini E, Masuh H, Licastro S, Zerba E. Laboratory and scaled up evaluation of cis-permethrin applied as a new ultra low volume formulation against Aedes aegypti (Diptera: Culicidae). Acta Trop. 2006; 97:1-4.

Zerba E. Fumigant canisters and other novel insecticide delivery system for public health. Public Health Magazine (Bayer). 1995; 12:62-71.

González Audino P, Licastro S, Zerba E. Thermal behaviour and biological activity of pyrethroids in smoke-generating formulations. Pest. Sci. 1999; 55:1187-93.

Fujisaki T, Reich M. TDRs contribution to the development of the fumigant canister for controlling Chagas disease. World Health Organization ( WHO). 1998. TDR/ER/RD/98.5.

Oppenoorth FJ. Biochemistry of insecticide resistance. Pestic. Biochem. Physiol. 1984; 22:187-93.

Tabashnik BE, Mota-Sanchez D, Whalon ME, Hollingworth RM, Carrière, Y. Defining terms for proactive management of resistance to Bt crops and pesticides. J. Med. Entomol. 2014; 107:496-507.

World Health Organization (WHO). Protocolo de evaluación de efecto insecticida sobre Triatominos. Acta Toxicol. Arg. 1994; 2:29-32.

Picollo MI, Vassena CV, Santo Orihuela PL, Barrios S, Zaidemberg M, Zerba E. High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. J. Med. Entomol. 2005; 42:637-42.

Toloza A, Germano M, Mougabure Cueto G, Vassena C, Zerba E, Picollo MI. Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J. Med. Entomol. 2008; 45:421-6.

Germano M, Santo Orihuela P, Roca Acevedo G, Toloza A, Vassena C, Picollo M, et al. Scientific evidence of three different insecticide-resistant profiles in Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina and Bolivia J. Med. Entomol. 2012; 49:1355-60.

Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop. 2015; 149:70-85.

Fronza G, Toloza AC, Picollo MI, Spillmann C, Mougabure-Cueto GA. Geographical variation of deltamethrin susceptibility of Triatoma infestans (Hemiptera: Reduviidae) in Argentina with emphasis on a resistant focus in the Gran Chaco. J. Med. Entomol. 2016; 53:880-7.

Fronza G, Roca-Acevedo G, Mougabure-Cueto GA, Sierra I, Capriotti N, Toloza AC. Insecticide resistance mechanisms in Triatoma infestans (Reduviidae: Triatominae): The putative role of enhanced detoxification and knockdown resistance (kdr) allele in a resistant hotspot from the Argentine Chaco. J. Med. Entomol. 2020; 57:837-44.

Lardeux F, Depickère S, Duchon S, Chavez T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Trop. Med. Int. Health. 2010; 15:1037-48.

Santo-Orihuela PL, Vassena CV, Zerba EN, Picollo MI. Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J. Med. Entomol. 2008; 45:298-306.

Santo-Orihuela PL, Picollo MI. Contribution of general esterases to pyrethroid resistant Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. Acta Toxicol. Argent. 2011; 19:32-40.

Santo-Orihuela PL, Carvajal G; Picollo MI, Vassena C. Toxicological and biochemical analysis of the susceptibility of sylvatic Triatoma infestans from the Andean Valley of Bolivia to organophosphate insecticide. Mem. Inst. Oswaldo Cruz 2013; 108:790-5.

Santo-Orihuela P, Vassena C, Carvajal G, Clark E, Menacho S, Bozo R, et al. Toxicological, enzymatic and molecular assessment of the insecticide susceptibility profile of Triatoma infestans populations from rural communities of Santa Cruz, Bolivia. J. Med. Entomol. 2017; 54:187-95.

Fabro J, Sterkel M, Capriotti N, Mougabure-Cueto G, Germano M, Rivera-Pomar R, Ons S. Identification of a point mutation associated with pyrethroid resistance in the para-type sodium channel of Triatoma infestans, a vector of Chagas’ disease. Infect. Genet. Evol. 2012; 12:487-91.

Capriotti N, Mougabure-Cueto G, Rivera-Pomar R, Ons S. L925I mutation in the Para-type sodium channel is associated with pyrethroid resistance in Triatoma infestans from the Gran Chaco region. PLoS 2014; 8, e2659.

Roca-Acevedo G, Picollo MI, Capriotti N, Sierra I, Santo-Orihuela PL. Examining mechanisms of pyrethroid resistance in eggs of two populations of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). J. Med. Entomol. 2015; 52:987-92.

Sierra I, Capriotti N, Fronza G, Mougabure-Cueto G, Ons S. Kdr mutations in Triatoma infestans from the Gran Chaco are distributed in two differentiated foci: Implications for pyrethroid resistance management. Acta Trop. 2016; 158:208-13.

Ministerio de Salud. Boletín integrado de Vigilancia; 2020. Argentina: Ministerio de Salud; BIV 524 | SE 48. 2020.

Seijo A, Morales A, Poustis G, Romer, Efron E. Outbreak of St. Louis encephalitis in the Metropolitan Buenos Aires area. Medicina. 2011; 71:211-7.

Dantur Juri MJ, Galante GB, Zaidenberg M, Almirón WR, Claps GL, Santana M. Longitudinal study of the species composition and spatio-temporal abundance of Anopheles larvae in a malaria risk area in Argentina. Florida Entomol. 2014; 97:1167-81.

Harburguer L, Licastro S, Masuh H, Zerba E. Biological and chemical characterization of a new larvicide ovitrap made of plastic with pyriproxyfen incorporated for Aedes aegypti (Diptera: Culicidae) Control. J. Med. Entomol. 2016; 53:647-52.

Gonzalez PV, González Audino PA, Masuh HM. Oviposition behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in response to the presence of heterospecific and conspecific larvae. J. Med. Entomol. 2016; 53:268-72.

Sfara V, Licastro SA, Masuh HM, Seccacini EA, Alzogaray RA, Zerba EN. Synergism between cis-permethrin and benzoyl phenyl urea insect growth regulators against Aedes aegypti larvae. J. Am. Mosq. Control. Assoc. 2007; 23:24-8.

Lucia A, Licastro S, Zerba E, Gonzalez Audino P, Masuh H. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour Technol. 2009; 100:6083-7.

Harburguer LV, Seccacini E, Masuh H, Audino PG, Zerba E, Licastro S. Thermal behaviour and biological activity against Aedes aegypti (Diptera: Culicidae) of permethrin and pyriproxyfen in a smoke-generating formulation. Pest Manag. Sci. 2009; 65:1208- 14.

Harburguer L, Beltrán G, Goldberg L, Goldberg L, Zerba E, Licastro S, et al. A new strategy for Aedes aegypti (Diptera: Culicidae) control with community participation using a new fumigant formulation. J. Med. Entomol. 2011; 48:577-83.

Harburguer L, Lucia A, Licastro S, Zerba E, Masuh H. Field comparison of thermal and non-thermal ultra-low-volume applications using water and diesel as solvents for managing dengue vector, Aedes aegypti. Trop. Med. Int. Health 2012a; 17:1274-80.

Harburguer L, Seccacini E, Licastro S, Zerba E, Masuh H. Droplet size and efficacy of an adulticide-larvicide ultralow-volume formulation on Aedes aegypti using different solvents and spray application methods. Pest Manag. Sci. 2012b; 68:137-41.

Organización Mundial de la Salud (OMS). Dengue and dengue hemorrhagic fever in the Americas: Guidelines for prevention and control. Washington DC; Scientific Publication; N° 548. 1995.

Albrieu Llinás G, Seccacini E, Gardenal CN, Licastro S. Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Mem. Inst. Oswaldo Cruz 2010; 105:113-6.

López Rodríguez RW. Estudio de la sensibilidad y/o resistencia a los insecticidas del Aedes aegypti, vector del dengue en Bolivia. Universidad Mayor de San Andrés: Universidad de Barcelona. 2015.

Albrieu Llinás G, Gardenal CN. Introduction of different lineages of Aedes aegypti in Argentina. J. Am. Mosq. Control Assoc. 2011; 27:429-32.

Moretti AN, Seccacini EA, Zerba EN, Canale D, Alzogaray RA. The botanical monoterpenes linalool and eugenol flush-out nymphs of Triatoma infestans. J.Med. Entomol. 2017; 54:1293-98.

Moretti AN, Zerba EN, Alzogaray RA. Lethal and sublethal effects of eucalyptol on vectors of Chagas disease Triatoma infestans and Rhodnius prolixus (Hemiptera: Reduviidae). Entomol. Exp. Appl. 2015; 154:62-70.

Reynoso MMN, Seccacini EA, Zerba EN, Alzogaray RA. Botanical monoterpenes synergize the toxicity of azamethiphos in the vector of Chagas disease, Triatoma infestans (Hemiptera: Reduviidae). Trop. Med. Int. Health. 2020; 12:1480-85.

Reynoso MMN, Lucia A, Zerba EN, Alzogaray RA. Eugenol- hyperactivated nymphs of Triatoma infestans become intoxicated faster that non-hyperactivated nymphs when exposed to a permethrin-treated surface. Parasite Vector. 2018; 11:573.

Lucia A, Guzmán E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid Interface Sci. 2021; 287; 102330.

Lucia A, Girard C, Fanucce M, Coviella C, Rubio RG, Ortega F, et al. Development of an environmentally friendly larvicidal formulation based on essential oil compound blend to control Aedes aegypti larvae: Correlations between physicochemical properties and insecticidal activity. ACS Sustain. Chem. Eng. 2020a; 8:10995-1006.

Lucia A, Toloza AC, Fanucce M, Fernández-Peña L, Ortega F, Rubio R, et al. Nanoemulsions based on thymol-eugenol mixtures: characterization, stability and larvicidal activity against Aedes aegypti. Bull. Insectol. 2020b; 73:153-60.

Lucia A, Guzmán E, Rubio RG, Ortega F. Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids Surf. A 2020c; 606:125513.

Cáceres M, Guzmán E, Alvarez-Costa A, Ortega F, G. Rubio R, Coviella C, et al. Surfactantless emulsions containing eugenol for imidacloprid solubilization: physicochemical characterization and toxicity against insecticide-resistant Cimex lectularius. Molecules 2020; 25:2290.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2022 Revista de Salud Ambiental