Estado de la resistencia a insecticidas en Triatoma infestans de Argentina

Gastón Mougabure-Cueto, Patricia A. Lobbia

Resumen


Los insectos triatominos son los vectores de la enfermedad de Chagas. El control químico de estos insectos es la principal herramienta utilizada para reducir la incidencia de la enfermedad. Los piretroides son los principales insecticidas utilizados para el control de los triatominos en todos los países endémicos. La evolución de resistencia a insecticidas convierte en ineficiente una exitosa estrategia de control químico. En Argentina se han detectado diferentes focos de resistencia en Triatoma infestans, el vector más importante en el Cono Sur de Sudamérica, asociados a deficiencias en el control. Los estudios realizados sobre esta especie muestran que la resistencia es un problema complejo, ya que evolucionó en varias zonas de la distribución geográfica de la especie, se identificaron diferentes mecanismos de resistencia, está asociada a modificaciones en diversos procesos biológicos, está vinculada a variaciones ambientales y hay escasez de alternativas de control. En este manuscrito presentamos una revisión del conocimiento sobre la resistencia a piretroides en T. infestans en Argentina.

Palabras clave


Triatoma infestans; Chagas; resistencia a insecticidas; piretroides

Texto completo:

PDF
PDF

Referencias


Beltramone A, Carbajal-de-la-Fuente A, Carrillo C, Ceccarelli S, Hernández R, Román-Miyasato M, Sanmartino M. Comunicación y Chagas Bases para un diálogo urgente. 1a edición. La Plata: Hablemos de Chagas. 2021.

Ceccarelli S, Balsalobre A, Cano M, Canale D, Lobbia P, Stariolo R, Rabinovich J, et al. Analysis of Chagas disease vectors occurrence data: the Argentinean triatomine species database. Biodivers Data J. 2020; 8:e58076.

Lent H, Wygodzinsky P. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist. 1979; 163:123–520.

Schofield C, Jannin J, Salvatella R. The future of Chagas disease control. Trends Parasitol. 2006; 21:583–8.

Salvatella R, Irabedra P, Castellanos L. Interruption of vector transmission by native vectors and the art of the possible. Mem. Inst. Oswaldo Cruz. 2014; 109:122–30.

Mougabure-Cueto G, Picollo M. Insecticide resistance in vector Chagas disease: evolution,mechanisms and management. Acta Trop. 2015; 149:70–85.

Mougabure-Cueto G, Picollo M. Insecticide resistance in triatomines. En: Guarneri AA, Lorenzo MG (editores) Triatominae - The Biology of Chagas Disease Vectors. New York: Springer Nature. 2021.

Pessoa G, Viñas P, Rosa A, Diotaiuti L. History of resistance of Triatominae vectors. Rev Soc Bras Med Trop. 2015; 48:380–9.

Mougabure-Cueto G, Sfara V. The analysis of dose-response curve from bioassays with quantal response: deterministic or statistical approaches? Toxicol. Letters. 2016; 248:46–51.

Roush R, McKenzie J. Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol. 1987; 32:361–80.

Organización Mundial de la Salud. 7th report. En: WHO Technical Reports Series No. 125. World Health Organization Committee on Insecticides. 1957.

Ffrench-Constant R, Roush R. Resistance detection and documentation: the relative roles of pesticidal and biochemical assay. En: Roush R, Tabashnik B (editores). Pesticide Resistance in Arthropods. New York: Chapman and Hall. 1990. pp. 4–38.

Onstad, D. Insect Resistance Management. Londres: Academic Press. 2008.

Robertson J, Russell R, Preisler H, Savin N. Bioassays with Arthropods, 2nd Edn. Boca Raton: CRC Press. 2007.

Organización Mundial de la Salud. Protocolo de evaluación de efecto insecticida sobre triatominos. Acta Toxicol Argent. 1994; 2:29–32.

González-Audino P, Vassena C, Barrios S, Zerba E, Picollo M. Role of enhanced detoxication in a Deltamethrin resistant population of Triatoma infestans (Hemiptera, Reduvidae) from Argentina. Mem Inst Oswaldo Cruz. 2004; 99:335–9.

Santo-Orihuela P, Vassena C, Zerba E, Picollo M. Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol. 2008; 45:298-306.

Picollo M, Vassena C, Santo Orihuela P, Barrios S, Zaidemberg M, Zerba E. High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from northern Argentina. J Med Entomol. 2005; 42:637–42.

Carvajal G, Mougabure-Cueto G, Toloza A. Toxicity of non- pyrethroid insecticides against Triatoma infestans (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 2012; 107:675–9.

Fronza G, Toloza AC, Picollo M, Spillmann C, Mougabure-Cueto G. Geographical variation of deltamethrin susceptibility of Triatoma infestans (Hemiptera: Reduviidae) in Argentina with emphasis on a resistant focus in the Gran Chaco. J Med Entomol. 2016; 53:880–7.

Nelson M. Experiencias en el monitoreo de niveles de susceptibilidad de los triatominos a los insecticidas en las Américas. Acta Toxicol Argent. 1994; 2:29–58.

Lardeux F, Depickère S, Duchon S, Chavez T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Tropical Med Int Health. 2010; 15:1037–48.

Remón C, Zerba E, Lobbia P, Mougabure-Cueto G. A methodology based on insecticide impregnated filter paper for monitoring resistance to deltamethrin in Triatoma infestans field populations. Med Vet Entomol. 2017; 31:414–26.

Remón C, Fronza G, Maza Y, Sartor P, Weinberg D, Mougabure- Cueto G. Resistance to deltamethrin in Triatoma infestans: microgeographical distribution, validation of a rapid detection bioassay and evaluation of a fumigant canister as control alternative strategy. B Entomol Res. 2020; 110:645–53.

Germano M, Acevedo G, Mougabure-Cueto G, Toloza A, Vassena C, Picollo M. New findings of insecticide resistance in Triatoma infestans (Heteroptera: Reduviidae) from the Gran Chaco. J Med Entomol. 2010; 47:1077–81.

Toloza A, Germano M, Mougabure-Cueto G, Vassena C, Zerba E, Picollo M. Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol. 2008; 45:421–6.

Germano M, Santo Orihuela P, Roca Acevedo G, Toloza A, Vassena C, Picollo MI, Mougabure-Cueto G. Scientific evidence of three different insecticide-resistant profles in Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina and Bolivia. J Med Entomol. 2012; 49:1355–60.

Germano M, Picollo M, Mougabure-Cueto G. Microgeographical study of insecticide resistance in Triatoma infestans from Argentina. Acta Trop. 2013; 128:561–65.

Piccinali R, Fronza G, Mougabure-Cueto G, Toloza A. Genetic structure of deltamethrin-resistant populations of Triatoma infestans (Hemiptera: Reduviidae) in the Gran Chaco. Parasitol Res. 2020; 119:3305–13.

Roca-Acevedo G, Picollo M, Santo-Orihuela P. Expression of insecticide resistance in immature life stages of Triatoma infestans (Hemiptera:Reduviidae). J Med Entomol. 2013; 50:816– 8.

Germano M, Picollo M. Stage-dependent expression of deltamethrin toxicity and resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina. J Med Entomol. 2018; 55:964–8.

Yu S. The toxicology and biochemistry of insecticides, 2nd Edn. Boca Raton: CRC Press. 2015.

Fronza G. Roca-Acevedo G, Mougabure-Cueto G, Sierra I, Capriotti N, Toloza A. Insecticide resistance mechanisms in Triatoma infestans (Reduviidae: Triatominae): the putative role of enhanced detoxifcation and knockdown resistance (kdr) allele in a resistant hotspot from the argentine Chaco. J Med Entomol. 2020; 57:837–44.

Grosso C, Blariza M, Mougabure-Cueto G, Picollo M, García BA. Identifcation of three cytochrome P450 genes in the Chagas’ disease vector Triatoma infestans: expression analysis in deltamethrin susceptible and resistant populations. Infect Genet Evol. 2016: 44:459–70.

Traverso L, Lavore A, Sierra I, Palacio V, Martinez-Barnetche J, Latorre-Estivalis JM, Mougabure-Cueto G, et al. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-relate gene families. PLoS Negl Trop Dis. 2017; 11:e0005313.

Dulbecco A, Moriconi D, Calderón-Fernández G, Lynn S, McCarthy A, Roca-Acevedo G, Salamanca-Moreno JA, et al. Integument CYP genes of the largest genome-wide cytochrome P450 expansions in triatomines participate in detoxifcation in deltamethrin-resistant Triatoma infestans. Sci Rep. 2018; 8:10177.

Fabro J, Sterkel M, Capriotti N, Mougabure-Cueto G, Germano M, Rivera-Pomar R, Ons S. Identification of a point mutation associated with pyrethroid resistance in the Para-type sodium channel of Triatoma infestans, a vector of Chagas disease. Infect Genet Evol. 2012; 12:487–91.

Capriotti N, Mougabure-Cueto G, Rivera-Pomar R, Ons S. L925I mutation in the Para-type sodium channel is associated with pyrethroid resistance in Triatoma infestans from the Gran Chaco region. PLoS Negl Trop Dis. 2014; 8:2659.

Roca-Acevedo G, Picollo M, Capriotti N, Sierra I, Santo-Orihuela P. Examining mechanisms of pyrethroid resistance in eggs of two populations of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol. 2015; 52:987–92.

Sierra I, Capriotti N, Fronza G, Mougabure Cueto G, Ons S. Kdr mutations in Triatoma infestans from the Gran Chaco are distributed in two differentiated foci: implications for pyrethroid resistance management. Acta Trop. 2016; 158:208–13.

Pedrini N, Mijailovsky SJ, Girotti JR, Stariolo R, Cardozo RM, Gentile A, Juárez MP. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl Trop Dis. 2009; 3:e434.

Calderón-Fernández G, Moriconi D, Dulbecco A, Juárez M. Transcriptome Analysis of the Triatoma infestans (Hemiptera: Reduviidae) Integument. J Med Entomol. 2017; 54:1531–42.

Dulbecco A, Moriconi D, Pedrini N. Knockdown of CYP4PR1, a cytochrome P450 gene highly expressed in the integument tissue of Triatoma infestans, increases susceptibility to deltamethrin in pyrethroid-resistant insects. Pestic Biochem Phys. 2021; 173:104781.

Kliot A, Ghanim M. Fitness costs associated with insecticide resistance. Pest Manag Sci. 2012; 68:1431–7.

Lobbia P, Calcagno J, Mougabure-Cueto G. Excretion/defecation patterns in Triatoma infestans populations that are, respectively, susceptible and resistant to deltamethrin. Med Ve Entomol. 2018; 32:311–22.

Rivero A, Vézilier J, Weill M, Read A, Gandon S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog. 2010; 6:e1001000.

Germano M, Picollo M. Reproductive and developmental costs of deltamethrin resistance in the Chagas disease vector Triatoma infestans. J Vector Ecol. 2015; 40:1–7.

Lobbia P, Rodríguez C, Mougabure-Cueto G. Effect of nutritional state and dispersal on the reproductive effciency in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae) susceptible and resistant to deltamethrin. Acta Trop. 2019; 191:228–38.

Lobbia P, Remón C, Mougabure-Cueto G. Autogenic capacity in Triatoma infestans (Klug, 1834) (Hemiptera Reduviidae) susceptible and resistant to deltamethrin. Parasitol Res. 2021; 120:2263–8.

Lobbia P, Rodríguez C, Mougabure-Cueto G. Effect of reproductive state on active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae) susceptible and resistant to deltamethrin. Acta Trop. 2019; 196:7–14.

Lobbia P, Mougabure-Cueto G. Active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae): Effects of nutritional status, the presence of a food source and the toxicological phenotype. Acta Trop. 2020; 204:105345.

May-Concha I, Remón C, Mougabure-Cueto G. Behavioral response mediated by feces in Triatoma infestans (Hemiptera: Reduviidae: triatominae) susceptible and resistant to deltamethrin. Acta Trop. 2020; 206:105442.

Cecere M, Vazquez-Prokopec G, Gürtler R, Kitron U. Spatio- temporal analysis of reinfestation by Triatoma infestans (Hemiptera: Reduviidae) following insecticide spraying in a rural community in northwestern Argentina. Am J Trop Med Hyg. 2004; 71:803–10.

McKenzie J. Ecological and evolutionary aspects of insecticide resistance. California: Academic Press. 1996.

Fronza G, Toloza A, Picollo M, Carbajo A, Rodríguez S, Mougabure-Cueto G. Modelling the association between deltamethrin resistance in Triatoma infestans populations of the Argentinian Gran Chaco region with environmental factors. Acta Trop. 2019; 194:53–61.

Bustamante Gomez M, Gonçalves Diotaiuti L, Gorla D. Distribution of pyrethroid resistant populations of Triatoma infestans in the southern cone of South America. PLoS Negl Trop Dis. 2016; 10:1–15.

Marti G. Enemigos naturales de Triatominos de la Argentina, expectativas para un control integrado Pp. 65–72. En: Storino R. (Ed.) Chagas en el Siglo XXI. De la enfermedad a la problemática social. Buenos Aires: Editorial Akadia. 2009.

Zaidemberg M. Evolución de la infestación en un área de triatominos resistentes a piretroides, Salvador Mazza, Salta, Argentina. Rev Arg Zoonosis Enf Inf Emerg. 2012; VII:3–13.

Gurevitz J, Gaspe M, Enríquez G, Vassena C, Alvarado-Otegui J, Provecho YM, Mougabure-Cueto G. Unexpected failures to control Chagas disease vector with pyrethroid spraying in northern Argentina. J Med Entomol. 2012; 49:1379–86.

Germano M, Picollo M, Spillmann C, Mougabure-Cueto G. Fenitrothion: an alternative insecticide for the control of deltamethrin-resistant populations of Triatoma infestans in northern Argentina. Med Vet Entomol. 2014; 28:21–5.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Revista de Salud Ambiental

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.